Convergence of densities of some functionals of Gaussian processes

نویسندگان

  • Yaozhong Hu
  • Fei Lu
  • David Nualart
چکیده

We study the convergence of densities of a sequence of random variables to a normal density. The random variables considered are nonlinear functionals of a Gaussian process. The tool we are using is the Malliavin calculus, in particular, the integration by parts formula and the Stein’s method. Applications to the convergence of densities of the least square estimator for the drift parameter in Ornstein-Ulenbeck is also considered. The main difficulty in application is the verification of non-degeneracy of random variables. We address this difficulty for random variables in the second Wiener chaos, and connect it to the upper bound estimate in small deviation theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions

The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

متن کامل

On weak convergence of functionals on smooth random functions ∗

The numbers of level crossings and extremes for random processes and fields play an important role in reliability theory and many engineering applications. In many cases for Gaussian processes the Poisson approximation for their asymptotic distributions is used. This paper extends an approach proposed in Rusakov and Seleznjev (1988) for smooth random processes on a finite interval. It turns out...

متن کامل

Level crossings and other level functionals of stationary Gaussian processes

Abstract: This paper presents a synthesis on the mathematical work done on level crossings of stationary Gaussian processes, with some extensions. The main results [(factorial) moments, representation into the Wiener Chaos, asymptotic results, rate of convergence, local time and number of crossings] are described, as well as the different approaches [normal comparison method, Rice method, Stein...

متن کامل

Convergence of latent mixing measures in nonparametric and mixture models

We consider Wasserstein distance functionals for assessing the convergence of latent discrete measures, which serve as mixing distributions in hierarchical and nonparametric mixture models. We clarify the relationships between Wasserstein distances of mixing distributions and f -divergence functionals such as Hellinger and Kullback-Leibler distances on the space of mixture distributions using v...

متن کامل

Estimating linear functionals in Poisson mixture models

This paper concerns the problem of estimating linear functionals of the mixing distribution from Poisson mixture observations. In particular, linear functionals for which parametric rate of convergence cannot be achieved are studied. It appears that Gaussian functionals are rather easy to estimate. Estimation of the distibution functions is then considered by approximating this functional by Ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013